Palladium-catalyzed regioselective arylation of silyloxy compounds with triarylantimony diacetates

Suk-Ku Kang,* Hyung-Chul Ryu and Young-Taek Hong

Department of Chemistry and BK-21 School of Molecular Science, Sungkyunkwan University, Natural Science Campus, Suwon 440-746, Korea

Received (in Cambridge, UK) 7th August 2000, Accepted 15th September 2000 First published as an Advance Article on the web 28th September 2000

The palladium-catalyzed arylation of enol silyl ethers, siloxydienes, silyloxycyclopropane with triarylantimony diacetates was carried out in the presence of PdCl₂- $(CH_3CN)_2$ (5 mol%) in DME–CH₃CN at room temperature under mild conditions.

The anylation of ketones to synthesize α -aryl ketones has received much attention in recent years.1 The palladiumcatalyzed arylation of silyl enol ethers or trimethylsilyl acetals with aryl bromides is known.² As an alternative to the use of an organic electrophile, phenyl-substituted hypervalent iodonium salts have been employed in the arylation of silyl enol ethers.³ Main group metals such as aryl-substituted bismuth⁴ and lead⁵ compounds have been utilized in the arylation of ketones and active methylene compounds. Recently, Buchwald⁶ and Hartwig⁷ reported palladium-catalyzed α -arylation of ketones. In connection with our program to utilize pentavalent antimony diacetates in palladium-catalyzed coupling reactions,⁸ we wish to report here the arylation of silyl enol ethers and silvl dienol ethers, and ketene trimethylsilvl acetals with triarylantimony diacetates to give the aryl-substituted ketones or esters (Scheme 1).

The results of the arylation of silyl enol ethers with triarylantimony acetates are summarized in Table 1. The 1-[(trimethylsilyl)oxy]cyclopentene (1a) reacted with triphenylantimony diacetate (2a) in the presence of PdCl₂ (5 mol %) in DME–CH₃CN (1:1) and H₂O (10% v/v) at room temperature for 6 h to afford the 2-phenylcyclopentanone (3a) in 68% yield (entry 1 in Table 1). Of the catalysts PdCl₂, Pd(OAc)₂, Pd₂-(dba)₃, Pd(PPh₃)₄ tested, PdCl₂ was the best choice. The solvent system DME–CH₃CN (1:1) in the presence of a catalytic amount of H₂O (10% v/v) was most suitable among the solvents DMF, DME, CH₃CN, DME–CH₃CN (1:1), NMP tested. The role of water is not clear. Triarylantimony(v) diacetates 2a and 2b were prepared by reaction of triarylantimony(III) with PhI(OAc)₂ by stirring in CH₂Cl₂ at room temperature for 6–7 h (Scheme 2).⁹

Under the same conditions triphenylantimony dichloride (2c) was treated with 1a to give the phenylated cyclopentanone 3a in 63% yield (entry 2). For the (cyclohexa-1,5-dienyloxy)-trimethylsilane (1b) with 2a, the 6-phenylcyclohex-2-enone (3b)

3350 J. Chem. Soc., Perkin Trans. 1, 2000, 3350–3351

Ar ₃ Sb	·	PhI(OAc) ₂	$-CH_2Cl_2$ rt, 7h	$Ar_3Sb(OAc)_2$ - PhI
				2a Ar = Ph 73% 2b Ar = p -Tolyl 77%
			Scheme 2	

was afforded in the presence of PdCl₂(CH₃CN)₂, in DME-CH₃CN (1:1) and H₂O (10% v/v) in 78% yield (entry 3). Under the same conditions tri-p-tolylantimony diacetate (2b) reacted with 1b to give 6-p-tolylcyclohex-2-enone (3c) in 77% yield (entry 4). The presence of H_2O (10% v/v) is critical in this coupling. Without a small amount of H₂O, we could get the product 3c in rather low (35%) yield. When the 2-furyloxytrimethylsilane (1c) was employed as ketene silyl acetal to react with 2a, the thermodynamically more stable 5phenylfuran-2(3H)-one (3d) was afforded in 82% yield (entry 5). The 2-furyloxysilane 1c was readily coupled with 2c and **2b** to provide **3d** and **3e** in 77 and 78% yields, respectively (entries 6 and 7). The regioselectivity of 3d could be explained by the isomerization of the α,β -unsaturated lactone under the reaction conditions. For the [(1-ethoxycyclopropyl)oxy]trimethylsilane (1d), the reaction with triphenylantimony diacetate (2a) in the presence of PdCl₂ (5 mol%) in DME-CH₃CN (1:1) at room temperature for 6 h afforded the 3phenylacrylic acid ethyl ester (3f) in 78% yield (entry 8). It is presumed that under these conditions the intermediate ethyl acrylate is formed by β -elimination of the homoenolate $[Ph_3(OAc)SbPdCH_2CH_2CO_2Et]$ followed by Heck reaction with $Ph_3Sb(OAc)_2$. Under the same conditions triphenylantimony dichloride (2c) and tri-*p*-tolylantimony diacetate (2b) were treated with 1d to give the ester 3f and 3g in 75 and 68% yields, respectively (entries 9 and 10).

In summary the silyl enol ether, silyl dienol ethers, and silyloxycyclopropane were arylated in the presence of a palladium catalyst with triarylantimony(v) diacetates under mild conditions. This method has the advantage of mild conditions involving the use of $PdCl_2$ at room temperature even in the presence of water.

Experimental

Typical procedure

To a mixture of tri-*p*-tolylantimony diacetate (**2b**) (454 mg, 1.00 mmol) and PdCl₂(CH₃CN)₂ (13 mg, 5 mol%) was added (cyclohexa-1,5-dienyloxy)trimethylsilane (**1b**) (168 mg, 1.00 mmol) under an N₂ atmosphere at room temperature in DME–CH₃CN (1:1, 20 mL) and H₂O (2 mL, 10% v/v). The reaction mixture was stirred at room temperature for 8 h, extracted with ether (20 mL × 3), and washed with water (20 mL × 3). The organic layer was dried over anhydrous MgSO₄ and evaporated *in vacuo*. The crude product was separated by SiO₂ column chromatography (EtOAc–hexanes 1:10, R_f = 0.38) to afford the coupled product 5-*p*-tolylcyclohex-2-enone (**3c**) (143.4 mg,

DOI: 10.1039/b006431i

Table 1	Palladium-catalyzed	regioselective ar	vlation of silv	loxy com	pounds with tria	rylantimony d	iacetates
			,				

	Entry	Silyloxy compounds	Triarylantimony diacetates	Product	Isolated yield (%)
	1	OSiMe ₃	Ph ₃ Sb(OAc) ₂ 2a		68
	2	1a 1a	Ph ₃ SbCl ₂ 2c	3a 3a	63
	3		2a	Ph 3h	78 ª
	4	1b	$\frac{1}{2b}$		77 <i>ª</i>
	5	OSiMe ₃	2a	Ph Job O 3d	82 ^b
	6	1c	2c	3d	77 ^b
	7	1c	2b	Job 0	78 ^b
	8	EtO OSiMe ₃	2a	Ph OEt	78 ^b
	9	1d	2c	3f	75 ^{<i>b</i>}
	10	1d	2b	O OEt	68 <i>^b</i>
DdCl (CH CN), was	used as esta	lust instead of DdCl b	The reaction was considered	3b	tions

PdCl₂(CH₃CN)₂ was used as catalyst instead of PdCl₂. ^b The reaction was carried out under non-aqueous conditions.

77%); $\delta_{\rm H}$ (500 MHz, CDCl₃) 2.27 (m, 2 H), 2.38 (s, 3 H), 2.47 (m, 2 H), 3.57 (t, 1 H, J = 9.5 Hz), 6.15 (m, 1 H), 7.01 (m, 3 H), 7.14 (d, 2 H, J = 8.0 Hz); v_{max} (KBr)/cm⁻¹ 3055, 2915, 2880, 1731; *m*/*z* 186 (27), 117 (100), 91 (6), 68 (4).

To a mixture of triphenylantimony diacetate (2a) (412 mg, 1.00 mmol) and PdCl₂ (8.9 mg, 5 mol%) was added (furan-2yloxy)trimethylsilane (1c) (156 mg, 1.00 mmol) under an N₂ atmosphere at room temperature in DME-CH₃CN (1:1, 20 mL). The reaction mixture was stirred at room temperature for 8 h, extracted with ether (20 mL \times 3), and washed with water (20 mL \times 3). The organic layer was dried over anhydrous MgSO4 and evaporated in vacuo. The crude product was separated by SiO₂ column chromatography (EtOAc-hexanes 1:3, $R_{\rm f} = 0.26$) to afford the coupled product 5-phenylfuran-2(3H)one (3d) (132 mg, 82%); $\delta_{\rm H}$ (500 MHz, $\dot{\rm CDCl}_3$) 3.42 (d, 2 H, J = 2.7 Hz), 5.78 (t, 1 H, J = 2.7 Hz), 7.39 (m, 3 H), 7.60 (m, 2 H); v_{max} (KBr)/cm⁻¹ 3055, 1804, 1265; *m*/z 162, 161, 160 (100), 131, 105, 77.

Acknowledgements

Generous financial support from Korea Research Foundation Grant(KRF-2000-015-DP0262) and KOSEF-CMDS(Center for Molecular Design and Synthesis) is gratefully acknowledged.

References

- 1 R. A. Abramovitch, D. H. R. Barton and J.-P. Finet, Tetrahedron, 1988, 44, 3039.
- 2 (a) C. Carfagna, A. Musco, R. Santi and T. Fiorani, J. Org. Chem., 1991, 56, 261; (b) I. Kuwajima and H. Urabe, J. Am. Chem. Soc., 1982, 104, 6831.
- 3 K. Chen and G. F. Koser, J. Org. Chem., 1991, 56, 5764.
- 4 (a) D. H. R. Barton, J.-P. Finet, J. Khamsi and C. Peehon, Tetrahedron Lett., 1986, 27, 3619; (b) A. Fedorov, S. Combes and J.-P. Finet, Tetrahedron, 1999, 55, 1341.
- 5 (a) J. Morgan, J. T. Pinhey and B. A. Rowe, J. Chem. Soc., Perkin Trans. 1, 1997, 1005; (b) D. H. R. Barton, D. M. X. Donnelly, J.-P. Finet and P. J. Guiry, J. Chem. Soc., Perkin Trans. 1, 1992, 1365.
- 6 M. Palucki and S. L. Buchwald, J. Am. Chem. Soc., 1997, 119, 11108.
- 7 B. Hamann and J. F. Hartwig, J. Am. Chem. Soc., 1997, 119, 12382.
- 8 S.-K. Kang, H.-C. Ryu and S.-W. Lee, J. Organomet. Chem., 2000, in the press.
- 9 In the case of triarylbismuth(v) diacetates, triarylbismuth(v) diacetates were prepared by the reaction of triarylbismuth(III) with PhI(OAc)₂. See, S. Combes and J.-P. Finet, Tetrahedron, 1998, 54, 4313.